What Happens When You Literally Hang Something Out to Dry?

I got a question today!  A good friend from high school asked:

Hey! So I have a sciencey question for you. But don’t laugh at me! It might seem kinda silly at first, but bear with me. Ok, how does water evaporate without heat? Like a towel is wet, so we put it in the sun to dry (tada heat!) but if its a kitchen or a bathroom towel that doesn’t see any particular increase in temp? How does the towel dry? What happens to the water? Does it evaporate but in a more mild version of the cycle of thinking?
It’s actually a really good question, and the answer depends on some statistical physics and thermodynamics. You know water is turning into water vapor all the time around you, but you can also see that these things clearly aren’t boiling away.

I’ve said before that temperature and heat are kind of weird, even though we talk about them all the time:

It’s not the same thing as energy, but it is related to that.  And in scientific contexts, temperature is not the same as heat.  Heat is defined as the transfer of energy between bodies by some thermal process, like radiation (basically how old light bulbs work), conduction (touching), or convection (heat transfer by a fluid moving, like the way you might see soup churn on a stove).  So as a kind of approximate definition, we can think of temperature as a measure of how much energy something could give away as heat.
The other key point is that temperature is only an average measure of energy, as the molecules are all moving at different speeds (we touched on this at the end of this post on “negative temperature”). This turns out to be crucial, because this helps explain the distinction between boiling and evaporating a liquid. Boiling is when you heat a liquid to its boiling point, at which point it overcomes the attractive forces holding the molecules together in a liquid. In evaporation, it’s only the random molecules that happen to be moving fast enough to overcome those forces that leave.
We can better represent this with a graph showing the probabilities of each molecule having a particular velocity or energy. (Here we’re using the Maxwell-Boltzmann distribution, which is technically meant for ideal gases, but works as a rough approximation for liquids.) That bar on the right marks out an energy of interest, so here we’ll say it’s the energy needed for a molecule to escape the liquid (vaporization energy). At every temperature, there will always be some molecules that happen to have enough energy to leave the liquid. Because the more energetic molecules  leave first, this is also why evaporating liquids cool things off.
A graph with x-axis labelled

Maxwell-Boltzmann distributions of the energy of molecules in a gas at various temperatures. From http://ibchem.com/IB/ibnotes/full/sta_htm/Maxwell_Boltzmann.htm

You might wonder that if say, your glass of water or a drenched towel is technically cooling off from evaporation, why will it completely evaporate over time? Because the water will keep warming up to room temperature and atomic collisions will keep bringing up the remaining molecules back to a similar Boltzmann distribution.
My friend also picks up on a good observation comparing putting the towel out in the sun versus hanging it in a bathroom. Infrared light from the sun will heat up the towel compared to one hanging around in your house, and you can see that at the hotter temperatures, more molecules exceed the vaporization energy, so evaporation will be faster. (In cooking, this is also why you raise the heat but don’t need to boil a liquid to make a reduction.)

There’s another factor that’s really important in evaporation compared to boiling. You can only have so much water in a region of air before it starts condensing back into a liquid (when you see dew or fog, there’s basically so much water vapor it starts re-accumulating into drops faster than they can evaporate). So if it’s really humid, this process goes slower. This is also why people can get so hot in a sauna. Because the air is almost completely steam, their sweat can’t evaporate to cool them off.

Advertisements

Leave a reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s