Red Eye Take Warning – Our Strange, Cyclical Awareness of Pee in Pools

The news has been abuzz lately with a terrifying revelation: if you get red eye at the the pool, it’s not from the chlorine, it’s from urine. Or to put it more accurately, from the product of chlorine reacting with a chemical in the urine. In the water, chlorine easily reacts with uric acid, a chemical found in urine, and also in sweat, to form chloramines. It’s not surprising that this caught a lot of peoples’ eyes, especially since those product chemicals are linked to more than just eye irritation. But what’s really weird is what spurred this all on. It’s not a new study that finally proved this. It’s just the release of the CDC’s annual safe swimming guide and a survey from the National Swimming Pool Foundation. But this isn’t the first year the CDC mentioned this fact: an infographic from 2014’s Recreational Water Illness and Injury Prevention Week does and two different posters from 2013 do (the posters have had some slight tweaks, but the Internet Archive confirms they were there in 2013 and even 2012), and on a slightly related note, a poster from 2010 says that urine in the pool uses up the chlorine.

A young smiling boy is at the edge of a swimming pool, with goggles on his forehead.

My neighborhood swim coach probably could have convinced me to wear goggles a lot earlier if she told me it would have kept pee out of my eyes.

Here’s what I find even stranger. Last year there was a lot of publicity about a study suggesting the products of the chlorine-uric acid reaction might be linked to more severe harm than just red eye. But neither Bletchley, the leader of study, and none of the articles about it link the chemicals to red eye at all, or even mention urine’s role in red eye in the pool. Also, if you’re curious about the harm, but don’t want to read the articles, the conclusion is that it doesn’t even reach the dangerous limits for drinking water. According to The Atlantic, Bletchley is worried more that it might be easier for an event like a swimming competition to easily deplete the chlorine available for disinfecting a pool in only a short amount of time. This seems strange because it seems like a great time to bring up that eye irritation can be a decent personal marker for the quality of the pool as a way to empower people. If you’re at a pool and your eyes feel like they’re on fire or you’re hacking a lot without swallowing water, maybe that’s a good sign to tell the lifeguard they need to add more chlorine because most of it has probably formed chloramines by then.

Discussion of urine and red eye seems to phase in and out over time, and actually even the focus of whether its sweat or urine does too. In 2013, the same person from the CDC spoke with LiveScience and they mention that the pool smell and red eye is mainly caused by chloramines (and therefore urine and sweat), not chlorine. A piece from 2012 reacting to a radio host goes into detail on chloramines. During the 2012 Olympics, Huffington Post discussed the irritating effects of chloramines on your body, including red eye, and the depletion of chlorine for sterilization after many Olympic swimmers admitted to peeing in the pool. (Other pieces seem to ignore that this reaction happens and assume it’s fine since urine itself doesn’t have any compounds or microbes that would cause disease.) In 2009, CNN mentions that the chloramines cause both red eye and some respiratory irritation. The article is from around Memorial Day, suggesting it was just a typical awareness piece. Oh, and they also refer to a 2008 interview with Michael Phelps admitting that Olympians pee in the pool. The CDC also mentions chloramines as potential asthma triggers in poorly maintained and ventilated pools and as eye irritants in a web page and review study that year. In 2008, the same Purdue group published what seems like the first study to analyze these byproducts, because others had only looked at inorganic molecules. There the health concern is mainly about respiratory problems caused by poor indoor pool maintenance because these chemicals can start to build up. Nothing about red eye is mentioned there. In 2006, someone on the Straight Dope discussion boards refers to a recent local news article attributing red eye in the pool to chlorine bonding with pee or sweat. They ask whether or not that’s true. Someone on the board claims it’s actually because chlorine in the pool forms a small amount of hydrochloric acid that will always irritate your eyes. A later commenter links to a piece by Water Quality and Health Council pinning chloramine as the culprit. An article from the Australian Broadcasting Corporation talks about how nitrogen from urine and sweat is responsible for that “chlorine smell” at pools, but doesn’t mention it causing irritation or just using up chlorine that could go to sterilizing the pool.

Finally, I just decided to look up the earliest mention possible by restricting Google searches to earlier dates. Here is an article from the Chicago Tribune in 1996.

There is no smell when chlorine is added to a clean pool. The smell comes as the chlorine attacks all the waste in the pool. (That garbage is known as “organic load” to pool experts.) So some chlorine is in the water just waiting for dirt to come by. Other chlorine is busy attaching to that dirt, making something called combined chlorine. “It’s the combined chlorine that burns a kid’s eyes and all that fun stuff,” says chemist Dave Kierzkowski of Laporte Water Technology and Biochem, a Milwaukee company that makes pool chemicals.

We’ve known about this for nearly 20 years! We just seem to forget. Often. I realize part of this is the seasonal nature of swimming, and so most news outlets will do a piece on being safe at pools every year. But even then, it seems like every few years people are surprised that it is not chlorine that stings your eyes, but the product of its reaction with waste in the water. I’m curious if I can find older things from LexisNexis or journal searches I can do at school. (Google results for sites older than 1996 don’t make much sense, because it seems like the crawler is picking up more recent related stories that happen to show up as suggestions on older pages.) Also, I’m just curious about the distinction between Bletchley’s tests and pool supplies that measure “combined chlorine” and chloramine, which is discussed in this 2001 article as causing red eye. I imagine his is more precise, but Bletchley also says people don’t measure it, and I wonder why.

Advertisements

Let’s Rethink Science Journalism

There’s been a lot of talk about science journalism after the revelation that a heavily publicized study about chocolate helping weight loss was actually a sham. A great deal of this is meta-commentary about whether or not the whole “sting” was ethical or if it even added much to ongoing discussions on science communication. It’s worth pointing out that science journalism in major outlets could be said to work for the most part, as they didn’t actually report on the study. The ScienceNews piece points out that a Washington Post reporter did want to write up something on the study and dropped it when he became suspicious. HuffPo would be the obvious exception in that they evidently had TWO pieces at one point on the study, but it’s science and health sections have historically been pretty questionable. (The science section has gotten better lately. I don’t know about the health section.)

I’m going to mainly focus on science in general publications, because that’s what most people see. And because science journalism in general publications has a weird organization. The standard treatment seems to be that a science journalist should be able to write on any science topic, regardless of background. That increasingly strikes me as strange. The conceptual difference between, say, astronomy and neuroscience is huge. That’s not to say people can’t be good at covering multiple fields of science. Rachel Feltman at The Washington Post wonderfully covers developments from all over science. But I think we should recognize that this is an incredible talent that not everyone has. (Indeed, going over HuffPo’s recent pieces, it’s notable how many seem to come from actual scientists now compared to what seemed like a never-ending stream of uncredited articles probably coming from anyone with an Internet connection a few years ago.)

A man is shown looking slightly up. Floating above his head are a moon, frog, butterflies, crystals, and some other objects, perhaps representing his thoughts or ideas.

It’s hard to actually have all this in your head.

Pretending that all science writers can cover everything harms science journalism. Where I think this shows up particularly clear is coverage of work done by children. For instance, consider last year’s story about the 12-year-old who supposedly made a major breakthrough about lionfish. Let’s be clear: Lauren did a lot of research for a 12-year-old and contributed a lot to a science lab and we should celebrate that. But so many outlets either exagerrated the claims of her father or took his overly hyped claims too much at face value, because it seems like none of these original reporters had any idea where her project fit in with other research. Similarly, there was the 15-year-old who said to have “invented a way to charge your phone”, but his project was similar to research that has been done for years (but again, Angelo ended up doing a lot of work for his age and seemed to develop a way to make it more effective).

I don’t think there’s a reason why a publication couldn’t cover all its science section by having more specialized journalists who also happened to work outside of science. For example, maybe someone covering physical sciences could also cover engineering and manufacturing firms for business reporting and someone else could be on a combined life sciences/health beat. And someone who can specialize and keep up to date on a smaller area can probably toss out names that better reflect the diversity of the research community instead of just pulling up the same few powerful people who typically get referenced . In fact, probably one of the best trends in science coverage over the last decade has been the proliferation of pieces focusing on social implications of science and also pieces that focus on how science is shaped by society. Reporting like that would benefit from more journalists and communicators who cover things both inside and outside of science and can give voice to diverse groups. And also, it would be great if these pieces actually called on scholars in the sociology, history, and/or philosophy of science and technology to help inform these pieces.

It is an image announcing a panel discussion, entitled

Discussions like this reflect important discussions in society that need to happen in science, too. And they’re at their best when people can understand science and society.

The Coolest Part of that Potentially New State of Matter

So we’ve discussed states of matter. And the reason they’re in the news. But the idea that this is a new state of matter isn’t particularly ground-breaking. If we’re counting electron states alone as new states of matter, then those are practically a dime a dozen. Solid-state physicists spend a lot of time creating materials with weird electron behaviors: under this defintion, lots of the newer superconductors are their own states of matter, as are topological insulators.

What is a big deal is the way this behaves as a superconductor. “Typical” superconductors include basically any metal. When you cool them to a few degrees above absolute zero, they lose all electrical resistance and become superconductive. These are described by BCS theory, a key part of which says that at low temperatures, the few remaining atomic vibrations of a metal will actually cause electrons to pair up and all drop to a low energy. In the 1970s, though, people discovered that some metal oxides could also become superconductive, and they did at temperatures above 30 K. Some go as high as 130 K, which, while still cold to us (room temperature is about 300 K), is warm enough to use liquid nitrogen instead of incredibly expensivve liquid helium for cooling. However, BCS theory doesn’t describe superconductivity in these materials, which also means we don’t really have a guide to develop ones with properties we want. The dream of a lot of superconductor researchers is that we could one day make a material that is superconducting at room temperature, and use that to make things like power transmission lines that don’t lose any energy.

This paper focused on an interesting material: a crystal of buckyballs (molcules of 60 carbon atoms arranged like a soccer ball) modified to have some rubidium and cesium atoms. Depending on the concentration of rubidium versus cesium in the crystal, it can behave like a regular metal or the new state of matter they call a “Jahn-Teller metal” because it is conductive but also has a distortion of the soccer ball shape from something called the Jahn-Teller effect. What’s particularly interesting is that these also correspond to different superconductive behaviors. At a concentration where the crystal is a regular metal at room temperatures, it becomes a typical superconductor at low temperatures. If the crystal is a Jahn-Teller metal, it behaves a lot like a high-temperature superconductor, albeit at low temperatures.

This is the first time scientists have ever seen a single material that can behave like both kinds of superconductor. This is exciting becasue this offers a unique testing ground to figure out what drives unconventional superconductors. By changing the composition, researchers change the behavior of electrons in the material, and can study their behavior, and see what makes them go through the phase transition to a superconductor.