Quantum Waves are Still Physical, Regardless of Your Thoughts

Adam Frank, founder of NPR’s science and culture blog 13.7, recently published an essay on Aeon about materialism. It’s a bit confusing to get at what he’s trying to say because of the different focus its two titles have, as well as his own arguments. First, the titles. The title I saw first, which is what is displayed when shared on Facebook, is “Materialism alone cannot explain the riddle of consciousness”. But on Aeon, the title is “Minding matter”, with the sub-title or blurb of “The closer your look, the more the materialist position in physics appears to rest on shaky metaphysical ground.” The question of theories of mind is very different than philosophical interpretations of quantum mechanics.

This shows up in the article, where I found it confusing because Franks ties together several different arguments and confuses them with various ideas of “realism” and “materialism”. First, his conception of theories of mind is confusing. I’d say the average modern neuroscientist or other scholar of cognition is a materialist, but I’d be hesitant to say the average one is a reductionist who thinks thought depends very hard on the atoms in your brain. Computational theories of mind tend to be some of the most popular ones, and it’s hard to consider those reductionist. I would concede there may be too much of an experimental focus on reductionism (and that’s what has diffused into pop culture), but the debate over how to move from those experimental techniques to theoretical understanding is occurring: see the recent attempt at using neuroscience statistical techniques to understand Donkey Kong.

I also think he’s making a bit of an odd claim on reductionism in the other sciences in this passage:

A century of agnosticism about the true nature of matter hasn’t found its way deeply enough into other fields, where materialism still appears to be the most sensible way of dealing with the world and, most of all, with the mind. Some neuroscientists think that they’re being precise and grounded by holding tightly to materialist credentials. Molecular biologists, geneticists, and many other types of researchers – as well as the nonscientist public – have been similarly drawn to materialism’s seeming finality.

Yes, he technically calls it materialism, but he seems to basically equate it to reductionism by assuming the other sciences seem fine with being reducible to physics. But, first, Frank should know better from his own colleagues. The solid-state folks in his department work a lot with “emergentism” and point out that the supposedly more reductionist particle people now borrow concepts from them. And he should definitely know from his collaborators at 13.7 that the concept of reducibility is controversial across the sciences. Heck, even physical chemists take issue with being reducible to physics and will point out that QM models can’t fully reproduce aspects of the periodic table. Per the above, it’s worth pointing out that Jerry Fodor, a philosopher of mind and cognitive scientist, who does believe in a computational theory of mind disputes the idea of reductionism


This is funny because this tends to be controversial, not because it’s widely accepted.

Frank’s view on the nature of matter is also confusing. Here he seems to be suggesting “materialism” can really only refer to particulate theories of matter, e.g. something an instrument could definitely touch (in theory). But modern fundamental physics does accept fields and waves as real entities. “Shut up and calculate” isn’t useful for ontology or epistemology, but his professor’s pithy response actually isn’t that. Quantum field theories would agree that “an electron is that we attribute the properties of the electron” since electrons (and any particles) can actually take on any value of mass, charge, spin, etc. as virtual particles (which actually do exist, but only temporarily). The conventional values are what one gets in the process of renormalization in the theory. (I might be misstating that here, since I never actually got to doing QFT myself.) I would say this doesn’t mean electrons aren’t “real” or understood, but it would suggest that quantum fields are ontologically more fundamental than the particles are. If it makes more physical sense for an electron to be a probability wave, that’s bully for probability waves, not a lack of understanding. (Also, aside from experiments showing wave-particle duality, we’re now learning that even biochemistry is dependent on the wave nature of matter.)

I’m also not sure the discussion of wave function collapse does much work here. I don’t get why it would inherently undermine materialism, unless a consciousness interpretation were to win out, and as Frank admits, there’s still not much to support one interpretation over the other. (And even then, again, this could still be solved by a materialist view of consciousness.) He’s also ignoring the development of theories of quantum decoherence to explain wavefunction collapse as quantum systems interact with classical environments, and to my understanding, those are relatively agnostic to interpretation. (Although I think there’s an issue with timescales in quantitative descriptions.)

From there, Frank says we should be open to things beyond “materialism” in describing mind. But like my complaint with the title differences, those arguments don’t really follow from the bulk of the article focusing on philosophical issues in quantum mechanics. Also, he seems open to emergentism in the second to last paragraph. Actually, here I think Frank missed out on a great discussion. I think there are some great philosophy of science questions to be had at the level of QFT, especially with regards to epistemology, and especially directed to popular audiences. Even as a physics major, my main understanding of specific aspects of the framework like renormalization are accepted because “the math works”, which is different than other observables we measure. For instance, the anomalous magnetic moment is a very high precision test of quantum electrodynamics, the quantum field theory of electromagnetism, and our calculation is based on renormalization. But the “unreasonable effectiveness of mathematics” can sometimes be wrong and we might lucky in converging to something close. (Though at this point I might be pulling dangerously close to the Duhem-Quine thesis without knowing much of the technical details.) Instead, we got a mediocre crossover between the question of consciousness and interpretations of quantum mechanics, even though Frank tried hard to avoid turning into “woo”.

Weirdly Specific Questions I Want Answers to in Meta-science, part 1

Using “meta-science” as a somewhat expansive term for history, philosophy, and sociology of science. And using my blog as a place to write about something besides the physical chemistry of carbon nanomaterials in various liquids.

  • To what extent is sloppy/misleading terminology an attempt to cash in on buzzwords? Clearly, we know that motive exists – there aren’t two major papers trying to narrow down precise definitions of graphene-related terms for nothing. But as the papers also suggest, at what point is it a legitimate debate in the community about setting a definition? “Graphene” was a term that described a useful theoretical construct for decades before anyone ever thought someone could make a real sheet of it, so maybe it isn’t unreasonable that people started using to describe a variety of physical things related to the original idea.
    • This contains a sort of follow-up: What properties do people use in clarifying these definitions and how much does it vary by background? Personally, I would say I’m way closer to the ideal of “graphene” than lots of people working with more extensively chemically modified graphene derivatives and am fine with using it for almost anything that’s nearly all sp2 carbon with about 10 layers or less. But would a physicist who cares more about the electronic properties, and which vary a lot based on the number of layers even in the lower limit, consider that maddening?
  • Nanoscience is very interdisciplinary/transdisciplinary, but individual researchers can be quite grounded in just one field. How much work is being done where researchers are missing basic knowledge of another field their work is now straddling?
    • For instance, when reading up on polymer nanocomposites, it seems noted by lots of people with extensive polymer science backgrounds that there are many papers that don’t refer to basic aspects of polymer physics. My hunch is that a lot of this comes from the fact that many people in this field started working on the nanoparticles they want to incorporate into the composites and then moved into the composites. They may have backgrounds more in fields like solid-state physics, electrical engineering, or (inorganic/metallic/ceramic) materials science, where they would have been less likely to deal with polymer theory.
    • Similarly, it was noted in one paper I read that a lot of talk about solutions of nanoparticles probably would be more precise if the discussion was framed in terminology of colloids and dispersions.

Oh my gosh, I made fun of the subtitle for like two years, but it’s true

  • Is the ontological status of defects in nanoscience distinct from their treatment in bulk studies of materials? This is a bit related to the first question in that some definitions would preclude the existence of some defects in the referent material/structure.
    • On the other hand, does this stricter treatment make more sense in the few atom limit of many nanomaterials? Chemists can literally specify the type and location of every atom in successful products of well-studied cluster reactions, though these are even pushing the term “nano”.
    • Is this a reflection of applications of defects at the different scales? (More philosophically worded, are defects treated differently because of their teleological nature?) At the bulk level, we work to engineer the nature of defects to help develop the properties we want. At the nanoscale, some structures can basically be ruined for certain applications by the mislocation of a single atom. Is this also a reflection of the current practical process of needing to scale up the ability to make nanomaterials? E.g. as more realistic approaches to large-scale nanotech fabrication are developed, will the practical treatment of defects in nanomaterials converge to that of how we treat defects in the bulk?

Comparing Birth Control Trials Today to Those in the 60s Ignores a Sea Change in Research Ethics

Vox has a wonderful article on the recently published male birth control study that is a useful corrective to the narrative that falsely equates it to the original studies of The Pill. Though I say ignore their title, too, because it’s also not that helpful of a narrative either. But the content is useful in arguing against what seems like a terrible and callous framing of the study in most commentary. The key line: “And, yes, the rate of side effects in this study was higher than what women typically experience using hormonal birth control.” Also, can we point out if something like 10 women a year at a school like UVA were committing suicide and it might be linked to a medication they were taking, people would probably be concerned? There’s something disturbing about well-off American women mocking these effects that seemed to disproportionately affect men of color (the most side effects were reported from the Indonesian center, followed by the Chilean center).

My bigger concern here, though, is that most people seem to not understand (or are basically ignoring) how modern research ethics works. For instance, the notion of benefits being weighed in the evaluation of continuing the study aren’t merely the potential benefits of the treatment, but the added benefit of acquiring more data. This was an efficacy study (so I think Phase II, or maybe it was combined Phase I/II, although it might be a really small Phase III trial). It seems like the institutional review board felt enough data had been collected to reach conclusions on efficacy that more data didn’t justify the potential high rate of adverse effects. Which also DOES NOT mean that this treatment has been ruled out forever. The authors themselves recommend further development based on the 75% of participants claiming they would use this birth control method if it were available. I imagine they will tweak the formulation a bit before moving on to further trials. Also, it’s sort of amusing that complaints on this come from people who typically think moves toward regulatory approval are controlled by Big Pharma at the expense of patient health.

Yes, this is different than the initial birth control trials. Yes, the women of Puerto Rico were chosen as human guinea pigs. Though it’s worth pointing out another major factor in choosing Puerto Rico was that it actually had a pretty well organized family planning infrastructure in the 50s and 60s. Admittedly, there’s more racism almost certainly coming into play there, because the politics of family planning were super complicated through the early and mid 20th century and there were definitely overlaps between eugenics and family planning. It’s also worth pointing out the study was encouraged by Margaret Sanger (and earlier studies by Planned Parenthood). Also, the FDA didn’t even initially approve Enovid for contraception because the atmosphere was so repressive back then on reproductive health; it was for menstrual disorders but prescribed off-label for contraception, which is why we know so many women desperately wanted the pill. Heck, even the Puerto Rico study was nominally about seeing if the pill helped with breast cancer. It took another year of discussion by the researchers and companies to get the FDA to finally approve contraception as an on-label use. The company making the pill was actually so concerned about the dosage causing side effects they begged for FDA approval for a lower dose just for contraception (see page 27-28 there) but were rebuffed for another year or two and they refused to market the initial dose for solely for contraception. (Also, to clarify, no one is taking these medications anymore. These versions of the pill were phased out in the 80s.)

Was there sexism at play? Absolutely, and I totally get that. But that doesn’t mean the narrative from 2016 neatly maps onto the narrative of the 1950s and 1960s. Which brings me to my last point. If your view of research ethics is primarily colored by the 1960s, that’s terrifying. You know what else happened at the same time as the initial contraception pill studies? The US government was still letting black men die of syphilis in the name of research. The tissue of Henrietta Lacks was still being cultured without the knowledge or consent of anyone in her family. (And the way they were informed was heartbreaking.) People were unknowingly treated or injected with radioactive material (one of many instances is described here in the segment of testimony by Cliff Honicker). One study involved secretly injecting healthy people with cancer cells, and to prove a theme, those cells were descendants of the ones originally cultured from Henrietta Lacks. Heck, there’s the Milgram experiment and then the Stanford Prison Study was in the 70s. The ethics of human experimentation were a mess for most of the 20th century, and really, most of the history of science. Similarly, medical ethics were very different at the time. Which isn’t to justify those things. But don’t ignore that we’ve been working to make science and research more open, collaborative, and just over the last few decades, and people seem caught up in making humorous or spiteful points than continuing that work right now.

(Other aside, it’s worth pointing out that the comparison here probably does have to be to condoms, which you know, skip the side effects though their typical effectiveness rate is worse. Most of the methods don’t obviously change ejaculate, so unless measuring sperm concentration and motility is a couple’s idea of foreplay, sexual partners who don’t know each other well will still probably want a condom [or unfortunately another method, because yes, the system is sexist and women are expected to do more] as assurance. It’s worth pointing out the study design only worked with “stable” couples who were mutually monogamous and planned on staying together for at least a year during the duration of the study, so there presumably was a high degree of trust in these relationships.)

Reclaiming Science as a Liberal Art

What do you think of when someone talks about the liberal arts? Many of you probably think of subjects like English and literature, history, classics, and philosophy. Those are all a good start for a liberal education, but those are only fields in the humanities. Perhaps you think of the social sciences, to help you understand the institutions and actors in our culture; fields like psychology, sociology, or economics. What about subjects like physics, biology, chemistry, or astronomy? Would you ever think of them as belonging to the liberal arts, or would you cordon them off into the STEM fields? I would argue that excluding the sciences from the liberal arts is both historically wrong and harms society.

First, let’s look at the original conception of the liberal arts. Your study would begin with the trivium, the three subjects of grammar, logic, and rhetoric. The trivium has been described as a progression of study into argument. Grammar is concerned with how things are symbolized. Logic is concerned with how things are understood. Rhetoric is concerned with how things are effectively communicated, because what good is it to understand things if you cannot properly share your understanding to other learned people? With its focus on language, the trivium does fit the common stereotype of the liberal arts as a humanistic writing education.

But it is important to understand that the trivium was considered only the beginning of a liberal arts education. It was followed by the supposedly more “serious” quadrivium of arithmetic, geometry, music, and astronomy. The quadrivium is focused on number and can also be viewed as a progression. Arithmetic teaches you about pure numbers. Geometry looks at number to describe space. Music, as it was taught in the quadrivium, focused on the ratios that produce notes and the description of notes in time. Astronomy comes last, as it builds on this knowledge to understand the mathematical patterns in space and time of bodies in the heavens. Only after completing the quadrivium, when one would have a knowledge of both language and numbers, would a student move on to philosophy or theology, the “queen of the liberal arts”.

7 Liberal Arts

The seven liberal arts surrounding philosophy.

Although this progression might seem strange to some, it makes a lot of sense when you consider that science developed out of “natural philosophy”. Understanding what data and observations mean, whether they are from a normal experiment or “big data”, is a philosophical activity. As my professors say, running an experiment without an understanding of what I was measured makes me a technician, not a scientist. Or consider alchemists, who included many great experimentalists who developed some important chemical insights, but are typically excluded from our conception of science because they worked with different philosophical assumptions. The findings of modern science also tie into major questions that define philosophy. What does it say about our place in the universe if there are 10 billion planets like Earth in our galaxy, or when we are connected to all other living things on Earth through chemistry and evolution?

We get the term liberal arts from Latin, artes liberales, the arts or skills that are befitting of a free person. The children of the privileged would pursue those fields. This was in contrast to the mechanical arts – fields like clothesmaking, agriculture, architecture, martial arts, trade, cooking, and metalworking. The mechanical arts were a decent way for someone without status to make a living, but still considered servile and unbecoming of a free (read “noble”) person. This distinction breaks down in modern life because we are no longer that elitist in our approach to liberal education. We think everyone should be “free”, not just an established elite.

More importantly, in a liberal democracy, we think everyone should have some say in how they are governed. Many major issues in modern society relate to scientific understanding and knowledge. To talk about vaccines, you need to have some understanding of the immune system. The discussion over chemicals is very different when you know that we are made up chemicals. It is hard to understand what is at stake in climate change without a knowledge of how Earth’s various geological and environmental systems work and it is hard to evaluate solutions if you don’t know where energy comes from. Or how can we talk about surveillance without understanding how information is obtained and how it is distributed? The Founding Fathers say they had to study politics and war to win freedom for their new nation. As part of a liberal education, Americans today need to learn to science in order to keep theirs.

(Note: This post is based off a speech I gave as part of a contest at UVA. It reflects a view I think is often unconsidered in education discussions, so I wanted to adapt it into a blog post.

As another aside, it’s incredibly interesting people now tend to unambiguously think of social sciences as part of the liberal arts while wavering more on the natural sciences since the idea of a “social” science wasn’t really developed until well after the conception of the liberal arts.)

Where are all the engineering blogs?

I was browsing through Dynamic Ecology recently on my reader to catch up on end-of-2015 posts and was intrigued by one of the author’s comments on why there isn’t really an ecology blogosphere. And though I’ve pondered it before, this makes me wonder where the engineering blogosphere is. I don’t have much evidence to back up the loading of that question, but I’ve been in grad school for engineering for 3.5 years now, and it’s worth noting that I still haven’t heard of any major engineering blogs people follow. And the sheer randomness of Blogmetric’s ranking of engineering blogs seems to corroborate this: only the top 2 of the ranked engineering blogs are tracked to have over 100 visitors a month. A Github list of engineering blogs (which is currently the first result for Googling “engineering blogs”) seems incredibly focused on tech company blogs and IT/programming/development.

Engineering.com’s blog seems to have ended without even a goodbye at the end of 2014. Engineer Blogs has been radio silent since September of 2012. And the American Chemical Society’s magazine, Chemical & Engineering News, closed up nearly all of its blogs in mid-2014, with an explanation implying this was because they were viewed as a drain on resources that could be more productively used for other tasks. Chemical Engineering World (which as far as I can tell, is a personal blog and not affiliated to the Indian publication of the same name) seems to have just came back after a hiatus.

The Dynamic Ecology post’s second point on ecology not being very news-driven sounds compelling to me as a reason that could easily cross-apply to engineering, especially if you’re trying to move away from just tech company gossip. Having something well-known to react to can make it easier to post content that’ll actually engage readers because they start searching for it. Point 1 of the Neuroecology post’s on neuroscience lacking a blogosphere because neuroscience bloggers focus more on outreach to general audiences than technical exchanges with each other also seems valid. What’s interesting is the comparison I’m making. As Jeremy from Dynamic Ecology points out, the general science blogosphere is pretty vibrant. He and the Neuroecologist are focusing more on the lack of interacting blogging communities in specific disciplines. Engineering seems to lack this at both levels. I also wonder about some specific issues in engineering that can contribute to this.

  • Is engineering too broad to have a meaningful blogosphere? I see two distinct forces here.
    • First, is the breadth of engineering disciplines. I could see it being hard for there to be a lot of substantive discussion between, say, a chemical engineer and a computer scientist on a broad range of topics.
    • Second, there’s the huge influence of a lot of engineering actually being done in industry. I’m not going to say academic and corporate engineers don’t talk to each other, but it would also be dumb to pretend they have the same interests in how they approach outreach.
  • Is engineering too tied into the science blogosphere? (I wondered a similar thing last time I posted about engineers and outreach) Interested scientists and science writers can (and do) do a good job of explaining concepts and results from related engineering fields. For instance, Dot Physics is written by a physicist who routinely covers topics that are related to technology and engineering. On the opposite end, I clearly try to cover science topics that I think I can explain, even if I’m not experts in them. Randall Munroe straddles the border a lot in What If? and Thing Explainer.
  • You might think I’m treading around one obvious potential component of an engineering blogosphere, and that’s tech blogs. But engineering isn’t just “tech companies”, which in modern parlance seems to really just mean computer and Internet companies. (I’ve somewhat ranted about this before in the last two paragraphs of this post.) A lot of stuff also goes on in physical infrastructure that engineers could talk about. And in an era where the Internet seems increasingly interested in discussion of how system shapes our lives, it seems like we’re missing out if the people who help shape physical systems don’t share their voices.

Edit to add: I also realize I didn’t include any discussion about Twitter here, mainly because I’m still a novice there. But I still haven’t seen very long discussions on specific engineering issues on Twitter, though I assume tech is the exception again.

Quick Thoughts on Diversity in Physics

Earlier this month, during oral arguments for Fisher v. University of Texas, Chief Justice John Roberts asked what perspective an African-American student would offer in physics classrooms. The group Equity and Inclusion in Physics and Astronomy has written an open letter about why this line of questioning may miss the point about diversity in the classroom. But it also seems worth pointing out why culture does matter in physics (and science more broadly).

So nature is nature and people can develop theoretical understanding of it anywhere and it should be similar (I think. This is actually glossing over what I imagine is a deep philosophy of science question.) But nature is also incredibly vast. People approach studies of nature in ways that can reflect their culture. Someone may choose to study a phenomenon because it is one they see often in their lives. Or they may develop an analogy between theory and some aspect of culture that helps them better understand a concept. You can’t wax philosphical about Kekule thinking of ouroboros when he was studying the structure of benzene without admitting that culture has some influence on how people approach science. There are literally entire books and articles about Einstein and Poincare being influenced by sociotechnical issues of late 19th/early 20th century Europe as they developed concepts that would lead to Einstein’s theories of relativity. A physics community that is a monoculture then misses out on other influences and perspectives. So yes, physics should be diverse, and more importantly, physics should be welcoming to all kinds of people.

It’s also worth pointing out this becomes immensely important in engineering and technology, where the problems people choose to study are often immensely influenced by their life experiences. For instance, I have heard people say that India does a great deal of research on speech recognition as a user interface because India still has a large population that cannot read or write, and even then, they may not all use the same language.

What is the point of thesis/dissertation committees?

I ask this in all sincerity, because after talking to other students in other schools and other fields, I don’t seem any closer to an answer. Maybe it’s just because I think my department is weird, because we don’t assemble dissertation committees until we propose, and we propose fairly late (it’s pretty common for people to propose only a year before they plan on defending).

The closest thing to a consensus answer I can find is that committees exist to make sure advisors aren’t just handing out degrees. But if that is the case, it seems like there isn’t really a guarantee the average committee that doesn’t do much more than read the proposal and the dissertation would be effective at that. A group of less than half a dozen people who typically have two weeks to read a ~200 page summary of what is usually years of research can’t really independently verify the results that are presented. And if a professor really was intent on just handing out degrees to their lab, they could help make that data look more convincing. (I’m not saying this happens a lot. I don’t know for sure, but I don’t think so. My point is just that it seems easy to work around the supposed purpose of committees.)

I thought the point of a dissertation committee was to be a real committee, which in my mind means that at least part of it’s power comes from the fact that it is a group. Advisors can be great and all, but sometimes you need the perspective of other people to plan an experiment or help think through an interpretation of results. I thought the committee could help mediate part of the intellectual relationship between the advisor and student. Say a student wants to redo or alter some experiment but the advisor doesn’t think that it is worth the time; the student can try to convince the committee as a group of intellectual peers, and if they agree, they can essentially override the advisor’s wishes on behalf of the student. I think this is key because it can help diffuse some negative feelings in conflicts like this away from the student. (I don’t think the committee should take on issues that rise to the point of breaking up the advising relationship. Though if this works, I also think fewer issues should lead to the break up of the relationship.) I’m not sure if the converse matters as much because advisors do generally have a lot of control over what their students do, but if an advisor felt the student wasn’t doing something well, he or she could have the committee make it clearer.

So I’ll close with two questions I would love to hear answers from people in other graduate programs. First, when does you first assemble your committee? Second, what does your committee do?