Materials Advent 2018 Part 17 – Snow

Hexagonal plate with dendritic extensions. (precipitating snow).
Snow in an electron microscope.

The US Department of Agriculture has a seriously fascinating page on microscopy of snow flakes because it helps advance understanding of weather and crystal formation.

Snowflakes (usually) have hexagonal symmetry because this reflects the crystal structure of water molecules in the solid. This old article from Scientific American goes a bit more into the details on the formation of snowflakes, but it’s also something we still don’t entirely understand


Materials Advent 2018 Part 16 – Glitter

The New York times has already run the most whimsical materials science piece of the day and I won’t attempt to top the delightful Caity Weaver. So discover What is Glitter, or aluminum metalized polyethylene terephthalate.

PET polymer chain
Model of polyethylene terephthalate. Oxygen atoms are red, hydrogen atoms are white/gray, and carbon atoms are black.

Materials Advent 2018 Part 12-15 – Silver and Gold, large and small

Uses of silver in the U.S.
uses of gold in the USA

I’ll slightly tweak my rules again, because you know what silver and gold look like, and I actually think it’s interesting to tell people that we have lots of practical uses for them. Gold and silver are transition metals, that special middle part of the periodic table which represents the addition of a new set of electron orbitals (the d-orbitals). Electrons in the d-orbitals are special because they tend to overlap in energy with those in the s- or p-orbitals, helping increase the number of electrons that are free to move. This is actually why gold and silver are shiny – they have electrons that are easily excited and interact with visible light and reflect it back. Gold gets its unique yellow color because its electrons move so fast they actually need to be described by relativity and it shows that their energies decrease (essentially because of their increased relativistic mass at high speed).

The energy levels of silver hydride (AgH) and gold hydrige (AuH) before (n.r.) and after accounting for relativity. From this Reddit conversation on relativity in chemistry.

You’re probably less familiar with the nanoscale forms of gold and silver. Or you might be with silver because we now use the nanoparticles in lot of things for their antimicrobial properties. Our lab actually makes a lot of metal nanoparticles, and so I can show you a high-resolution image of these particles.

Silver nanoparticles on amorphous carbon. The lines in the particles are actually the organized rows of atoms. From this paper by my research lab.

Gold nanoparticles (and many other metals) are neat because they can completely change the color of solutions they are in, often to red in the case of gold. This is different from the yellow we see for large gold pieces because at a very small size, the electrons in the particles have different energy levels than at the macro scale, and so they absorb light from different colors. Old stained glass actually gets its colors from tiny amounts of metallic nanoparticles being incorporated into the glass while it was being formed. We’re still not entirely sure how the nanoparticles were incorporated in stained glass. Theories range from it being caused by poor cleaning of gold residue from the surfaces glass was worked on or contamination in the source materials.

The Lycurgus Cup is a particularly special kind of stained glass that changes color depending on how it is lit.

Materials Advent 2018 Parts 9, 10, and 11 – Weird Glasses

A teardropped shaped piece of glass seems to have an iridescent sheen
A photo of a Prince Rupert’s drop taken with a special polarizer that helps reveals stresses in the material

Following up on yesterday, I thought it would be fun to look at some weirder glasses.

Prince Rupert’s drops are teardrop (or tadpole) shaped pieces of glass made by dropping molten glass into cold water. They are famous for their bizarre strength. You can pound on the head all you want, and it will almost never break, but nick the tail a little bit and it spectacularly explodes.


This turns out to come from the way the drop forms. That initial bit that hits the water cools so fast it actually gets compressed by the cooling, making it stronger, but the tail is basically a path to the weak core. The trippy oil-puddle-esque image above is taken with a special kind of set-up that looks at light that ends up being polarized by stresses within the glass. Prince Rupert’s drops turn out to be technologically important, because efforts to understand them since the 1600s have inspired research into ways to make other kinds of glass stronger, leading to the Gorilla Glass and other toughened glass that now lines our smartphones and many other displays.

Metallic glasses are just what they sound like. Just like how I mentioned yesterday that metals are usually crystals, it turns out we can also try making them into glasses by cooling them so quickly their atoms can’t form an ordered structure. This requires either incredibly fast cooling (on the scale of at least 1000 degrees a second for some compositions) or an interesting work around using a lot of different metals together. It turns out that mixing a bunch of atoms of different sizes makes it harder for them to pack into a neat pattern.

The mix of atoms in metallic glasses helps them stay disordered.
A microscopy image showing the real atoms in a glassy alloy of unspecified composition. From Physical Metallurgy (Fifth Edition)

You might wonder why we want to make glass out of metals. It turns out to provide a special property – bounciness. And we literally demonstrate that with “atomic trampolines”. It’s really easy to deform a crystalline metal because that orderly crystal structure makes it easy to slide rows of atoms past each other when you hit them hard enough, just like it’s easy to push a row of desks lined up in a classroom. The glass can’t deform – there’s no preferred direction to push the atoms, so instead the energy just goes back to whatever it hits. This has a cost though – if you hit it too hard, just like regular glass, a metallic glass just shatters instead of accepting a dent. There was initially a lot of hope for them as new materials for the shells of devices like smartphones since they don’t transmit that energy to the components inside, but that’s proved harder to make than hoped. However, you can buy a golf club that takes advantage of the bounciness to essentially transmit all the energy from your swing into the ball. (Going farther back, they evidently also form the basis of most of those theft prevention tags that ring alarms.)

Finally, I’m breaking my rule a bit with this last one by not having an image, but did you know that toffee is also a glass? (Sorry, no one has put toffee under a high-resolution microscope or run it under an X-ray source for weird images for me yet) Or at least good toffee is. That crisp crunch you get from well-made toffee is because of glass shattering. When toffee feels gritty, it is because it has actually started to crystallize and typically has hundreds of little mini-crystals that want to deform. This is why some recipes suggest adding corn syrup. The bigger sugar molecules in corn syrup mixed up with the sucrose in regular table sugar mix up in a way like the metallic glasses above and make it harder for them to set into their crystal structure. Similarly, an early kind of stunt glass for special effects was literally made by boiling sugar into a clear candy.

Materials Advent 2018 Part 8 – Glass

Silica goes from crystalline to amorphous (glassy) from right to left

I’m going to (hopefully) permanently end the popular misconception that glass is a liquid with this post. Glass is not a really slow liquid – it is in fact a solid, based on its flow properties (yay rheology!). But glass is a solid without structure, or in fancy terms, an amorphous solid. Many solids you see are crystalline, not just the pretty stones pop cultures tends to reserve the name “crystal” for. A crystalline material is one where their atoms or molecules are arranged in a repeating 3D pattern. The metals in your car, the silicon in your computer, and the calcium phosphate mineral in your bones are also all crystals because we can see their atoms follow some crystal structure. While the atoms/molecules can differ, mathematicians have found out that there are only about 200 distinct ways to make a repeating pattern in 3D with no gaps or overlaps (and only 17 for 2D). This might seem low, but the point is that while tiny details may change, there’s only so many ways to combine the symmetries you can find, like reflections or rotations, and still fill up all of space (or your wall).

The image above is a high-resolution transmission electron micrograph literally showing you the atoms in silica (silicon oxide) – the material that makes up regular glass. On the left, it’s a crystal and the dots on the bottom show you in red and green where the different atoms are in a hexagon arrangement. Around 3/4 of the way to the right you see that the atoms are no longer always in hexagons and the shapes start to change. This side is amorphous.

Materials Advent 2018 part 7 – Liquid Crystals

An image shows bright regions of color on a black background. The left shows features reminiscent of oil spills. The right shows multiple butterfly-like features of four same-colored spots around a central point.
A polarized light image shows the patterns caused by two different arrangements of liquid crystals within the same sample. From Wikipedia: Liquid crystal

Liquid crystals are everywhere now (if you’re looking at this on a computer, your display is probably LCD, and a decent chance any TV you looked at lately is an LCD too). They’re another one of those weird in-between states like we see in rheology. Liquid crystals are liquids based on their mechanical properties, but their molecules show some large-scale ordering that resembles solid crystals. This is because the molecules in liquid crystals tend to be relatively large, like a polymer chain, so you make distinct structures by lining them up, but it can also still be hard to pack them closely to make a true solid. The first liquid crystal was actually found studying cholesterol!

Rods pointing in the same direction but randomly spaced out.
A “nematic” liquid crystal – the molecules are lined up in the same direction, but there is not clear pattern in how they are spaced. 

Most LCDs are based on liquid crystals in the nematic phase seen above. (Although evidently not LCD TVs) Because the molecules are asymmetric, they can be oriented by electric fields because their electrons will be pulled by the electric force. The power in an LCD is basically to turn on and off the voltage to twist the crystals. This twisting is done to change how light passes through. A bunch of nematic liquid crystals lined up next to each other essentially act as a filter called a polarizer and line up the waves of light passing through. At the top and bottom layer of your display are two permanently oriented filters that are perpendicular to each other, an arrangement which would not let any light pass through without the crystals being lined up in a way to help align the light somewhere in between. (This is also why you can sort of see the pixels of LCDs at off-angles and why the picture can look so off away from the center of LCD TVs – the light is really only lined up for someone looking straight through the display.)

Materials Advent 2018 3 (and 4 and 5): Pearl and its components

A black pearl rests on an iridescent shell in a black background
A black pearl on the shell of a black-lipped pearl oyster. From Wikipedia:

Pearls are quite beautiful and also (kind of) rare, which makes us appreciate them even more. But it turns out they are made of very common components – a variant of chalk (calcium carbonate) bound in strings of the polymer that makes up insect, shrimp, and crab shells (called chitin, as well as a few other polymers). The calcium carbonate variant (or “polymorph“) is called aragonite, which technically has a different crystal structure from the form we actually use as chalk, which is called calcite. To make pearls even more interesting, aragonite isn’t actually the stable form of calcium carbonate at typical temperatures on the surface of Earth, but something about the way clams and other molluscs grow shells assembles that structure instead of calcite (and researchers still aren’t entirely sure why). 

Image result for crystal structure of aragonite

Despite essentially being a combination of chalk and insect shells, pearls and the related materials in mollusc shells are incredibly strong. We often attribute this to the strength of curves at our macro level, but it also turns out the way these parts are combined at the micro level is really important. The main solid part is essentially laid out slabs made of smaller bricks of aragonite, not unlike a brick house. And they are separated by small spaces due to rough bits on each brick, which is also where the entangling bits of polymers go. It’s really hard for cracks to get far in this arrangement – to travel through a slab it has to keep going through the alternating order of bricks and through the more flexible polymers separating them, and to go through multiple slabs a crack has to get through even more polymer and also change preferred directions along the crystals because the bricks change arrangement across slabs. As a result, pearls and clam shells are about 10 times stronger than individual hunks of aragonite or the polymers. This makes pearls an incredibly interesting composite that engineers want to mimic. In fact,a professor I work with at UVA has published multiple papers about the strength of mother-of-pearl (often called nacre in technical contexts) and tried to mimic this structure with graphene

An electron microscope image of flakes of aragonite in a mother-of-pearl sample

Industrially, humans get a lot of chitin from industrial processing of shellfish and use it as fertilizer as a food additive to help improve texture. 

Image result for chitin