I Have a Hard Time Summing Up My Science and Politics Beliefs Into a Slogan

From a half-joking, half-serious post of my own on Facebook:

“SCIENCE IS POLITICAL BECAUSE THERE’S LOT OF INFLUENCE BY POLITICAL AND POWERFUL CULTURAL INSTITUTIONS, BUT NOT PARTISAN. AND ALSO THAT SCIENTIFIC RESULTS AFFECT MORE OF OURS LIVES. BUT LIKE MAN, WE REALLY SHOULDN’T DO THE WHOLE TECHNOCRACY THING. BUT LIKE EVIDENCE SHOULD MATTER. BUT ALSO VALUES MATTER WHEN EVALUATING STUFF. IT’S COMPLICATED. HAS ANYONE READ LATOUR? OR FEYERABEND? CAN SOMEONE EXPLAIN FEYERABEND TO ME? DOES ANYONE WANT TO GET DRINKS AND TALK AFTER THIS?”

the_end_is_not_for_a_while

Evidently, I am the alt-text from this comic.

“HERE ARE SOME GOOD ARTICLES ABOUT PHILOSOPHY AND SOCIOLOGY OF SCIENCE” (I didn’t actually give a list, since I knew I would never really be able to put that on a poster, but some suggested readings if you’re interested: the Decolonizing Science Reading List curated by astrophysicist Chanda Prescod-Weinstein, a recent article from The Atlantic about the March for Science, a perspective on Doing Science While Black, the history of genes as an example of the evolution of scientific ideas, honestly there’s a lot here, and this is just stuff I shared on my Facebook page over the last few months.)
“LIKE HOLY SHIT Y’ALL EUGENICS HAPPENED”
“LIKE, MAN, WE STERILIZED A LOT OF PEOPLE. ALSO, EVEN BASIC RESEARCH CAN BE MESSED UP. LIKE TUSKEGEE. OR LITERALLY INJECTING CANCER INTO PEOPLE TO SEE WHAT HAPPENS. OR CRISPR. LIKE, JEEZ, WHAT ARE WE GOING TO DO WITH THAT ONE? SOCIETY HELPS DETERMINE WHAT IS APPROPRIATE.”
“I FEEL LIKE I’M GOING OFF MESSAGE. BUT LIKE WHAT EXACTLY IS THE MESSAGE HERE”
“I DON’T KNOW WHAT THE MESSAGE IS, BUT THESE ARE PROBABLY GOOD TO DO. ESPECIALLY IF THEY INSPIRE CONVERSATIONS LIKE THIS.”
“ALSO, DID YOU KNOW THAT MULTICELLULAR LIFE INDEPENDENTLY EVOLVED AT LEAST 10 TIMES ON EARTH? I’M NOT GOING ANYWHERE WITH THAT, I JUST THINK IT’S NEAT AND WE DON’T TYPICALLY HEAR THAT IN INTRO BIO.”

Weirdly Specific Questions I Want Answers to in Meta-science, part 1

Using “meta-science” as a somewhat expansive term for history, philosophy, and sociology of science. And using my blog as a place to write about something besides the physical chemistry of carbon nanomaterials in various liquids.

  • To what extent is sloppy/misleading terminology an attempt to cash in on buzzwords? Clearly, we know that motive exists – there aren’t two major papers trying to narrow down precise definitions of graphene-related terms for nothing. But as the papers also suggest, at what point is it a legitimate debate in the community about setting a definition? “Graphene” was a term that described a useful theoretical construct for decades before anyone ever thought someone could make a real sheet of it, so maybe it isn’t unreasonable that people started using to describe a variety of physical things related to the original idea.
    • This contains a sort of follow-up: What properties do people use in clarifying these definitions and how much does it vary by background? Personally, I would say I’m way closer to the ideal of “graphene” than lots of people working with more extensively chemically modified graphene derivatives and am fine with using it for almost anything that’s nearly all sp2 carbon with about 10 layers or less. But would a physicist who cares more about the electronic properties, and which vary a lot based on the number of layers even in the lower limit, consider that maddening?
  • Nanoscience is very interdisciplinary/transdisciplinary, but individual researchers can be quite grounded in just one field. How much work is being done where researchers are missing basic knowledge of another field their work is now straddling?
    • For instance, when reading up on polymer nanocomposites, it seems noted by lots of people with extensive polymer science backgrounds that there are many papers that don’t refer to basic aspects of polymer physics. My hunch is that a lot of this comes from the fact that many people in this field started working on the nanoparticles they want to incorporate into the composites and then moved into the composites. They may have backgrounds more in fields like solid-state physics, electrical engineering, or (inorganic/metallic/ceramic) materials science, where they would have been less likely to deal with polymer theory.
    • Similarly, it was noted in one paper I read that a lot of talk about solutions of nanoparticles probably would be more precise if the discussion was framed in terminology of colloids and dispersions.
51cb2b3noc-l-_sx346_bo1204203200_

Oh my gosh, I made fun of the subtitle for like two years, but it’s true

  • Is the ontological status of defects in nanoscience distinct from their treatment in bulk studies of materials? This is a bit related to the first question in that some definitions would preclude the existence of some defects in the referent material/structure.
    • On the other hand, does this stricter treatment make more sense in the few atom limit of many nanomaterials? Chemists can literally specify the type and location of every atom in successful products of well-studied cluster reactions, though these are even pushing the term “nano”.
    • Is this a reflection of applications of defects at the different scales? (More philosophically worded, are defects treated differently because of their teleological nature?) At the bulk level, we work to engineer the nature of defects to help develop the properties we want. At the nanoscale, some structures can basically be ruined for certain applications by the mislocation of a single atom. Is this also a reflection of the current practical process of needing to scale up the ability to make nanomaterials? E.g. as more realistic approaches to large-scale nanotech fabrication are developed, will the practical treatment of defects in nanomaterials converge to that of how we treat defects in the bulk?

Reclaiming Science as a Liberal Art

What do you think of when someone talks about the liberal arts? Many of you probably think of subjects like English and literature, history, classics, and philosophy. Those are all a good start for a liberal education, but those are only fields in the humanities. Perhaps you think of the social sciences, to help you understand the institutions and actors in our culture; fields like psychology, sociology, or economics. What about subjects like physics, biology, chemistry, or astronomy? Would you ever think of them as belonging to the liberal arts, or would you cordon them off into the STEM fields? I would argue that excluding the sciences from the liberal arts is both historically wrong and harms society.

First, let’s look at the original conception of the liberal arts. Your study would begin with the trivium, the three subjects of grammar, logic, and rhetoric. The trivium has been described as a progression of study into argument. Grammar is concerned with how things are symbolized. Logic is concerned with how things are understood. Rhetoric is concerned with how things are effectively communicated, because what good is it to understand things if you cannot properly share your understanding to other learned people? With its focus on language, the trivium does fit the common stereotype of the liberal arts as a humanistic writing education.

But it is important to understand that the trivium was considered only the beginning of a liberal arts education. It was followed by the supposedly more “serious” quadrivium of arithmetic, geometry, music, and astronomy. The quadrivium is focused on number and can also be viewed as a progression. Arithmetic teaches you about pure numbers. Geometry looks at number to describe space. Music, as it was taught in the quadrivium, focused on the ratios that produce notes and the description of notes in time. Astronomy comes last, as it builds on this knowledge to understand the mathematical patterns in space and time of bodies in the heavens. Only after completing the quadrivium, when one would have a knowledge of both language and numbers, would a student move on to philosophy or theology, the “queen of the liberal arts”.

7 Liberal Arts

The seven liberal arts surrounding philosophy.

Although this progression might seem strange to some, it makes a lot of sense when you consider that science developed out of “natural philosophy”. Understanding what data and observations mean, whether they are from a normal experiment or “big data”, is a philosophical activity. As my professors say, running an experiment without an understanding of what I was measured makes me a technician, not a scientist. Or consider alchemists, who included many great experimentalists who developed some important chemical insights, but are typically excluded from our conception of science because they worked with different philosophical assumptions. The findings of modern science also tie into major questions that define philosophy. What does it say about our place in the universe if there are 10 billion planets like Earth in our galaxy, or when we are connected to all other living things on Earth through chemistry and evolution?

We get the term liberal arts from Latin, artes liberales, the arts or skills that are befitting of a free person. The children of the privileged would pursue those fields. This was in contrast to the mechanical arts – fields like clothesmaking, agriculture, architecture, martial arts, trade, cooking, and metalworking. The mechanical arts were a decent way for someone without status to make a living, but still considered servile and unbecoming of a free (read “noble”) person. This distinction breaks down in modern life because we are no longer that elitist in our approach to liberal education. We think everyone should be “free”, not just an established elite.

More importantly, in a liberal democracy, we think everyone should have some say in how they are governed. Many major issues in modern society relate to scientific understanding and knowledge. To talk about vaccines, you need to have some understanding of the immune system. The discussion over chemicals is very different when you know that we are made up chemicals. It is hard to understand what is at stake in climate change without a knowledge of how Earth’s various geological and environmental systems work and it is hard to evaluate solutions if you don’t know where energy comes from. Or how can we talk about surveillance without understanding how information is obtained and how it is distributed? The Founding Fathers say they had to study politics and war to win freedom for their new nation. As part of a liberal education, Americans today need to learn to science in order to keep theirs.

(Note: This post is based off a speech I gave as part of a contest at UVA. It reflects a view I think is often unconsidered in education discussions, so I wanted to adapt it into a blog post.

As another aside, it’s incredibly interesting people now tend to unambiguously think of social sciences as part of the liberal arts while wavering more on the natural sciences since the idea of a “social” science wasn’t really developed until well after the conception of the liberal arts.)

Where are all the engineering blogs?

I was browsing through Dynamic Ecology recently on my reader to catch up on end-of-2015 posts and was intrigued by one of the author’s comments on why there isn’t really an ecology blogosphere. And though I’ve pondered it before, this makes me wonder where the engineering blogosphere is. I don’t have much evidence to back up the loading of that question, but I’ve been in grad school for engineering for 3.5 years now, and it’s worth noting that I still haven’t heard of any major engineering blogs people follow. And the sheer randomness of Blogmetric’s ranking of engineering blogs seems to corroborate this: only the top 2 of the ranked engineering blogs are tracked to have over 100 visitors a month. A Github list of engineering blogs (which is currently the first result for Googling “engineering blogs”) seems incredibly focused on tech company blogs and IT/programming/development.

Engineering.com’s blog seems to have ended without even a goodbye at the end of 2014. Engineer Blogs has been radio silent since September of 2012. And the American Chemical Society’s magazine, Chemical & Engineering News, closed up nearly all of its blogs in mid-2014, with an explanation implying this was because they were viewed as a drain on resources that could be more productively used for other tasks. Chemical Engineering World (which as far as I can tell, is a personal blog and not affiliated to the Indian publication of the same name) seems to have just came back after a hiatus.

The Dynamic Ecology post’s second point on ecology not being very news-driven sounds compelling to me as a reason that could easily cross-apply to engineering, especially if you’re trying to move away from just tech company gossip. Having something well-known to react to can make it easier to post content that’ll actually engage readers because they start searching for it. Point 1 of the Neuroecology post’s on neuroscience lacking a blogosphere because neuroscience bloggers focus more on outreach to general audiences than technical exchanges with each other also seems valid. What’s interesting is the comparison I’m making. As Jeremy from Dynamic Ecology points out, the general science blogosphere is pretty vibrant. He and the Neuroecologist are focusing more on the lack of interacting blogging communities in specific disciplines. Engineering seems to lack this at both levels. I also wonder about some specific issues in engineering that can contribute to this.

  • Is engineering too broad to have a meaningful blogosphere? I see two distinct forces here.
    • First, is the breadth of engineering disciplines. I could see it being hard for there to be a lot of substantive discussion between, say, a chemical engineer and a computer scientist on a broad range of topics.
    • Second, there’s the huge influence of a lot of engineering actually being done in industry. I’m not going to say academic and corporate engineers don’t talk to each other, but it would also be dumb to pretend they have the same interests in how they approach outreach.
  • Is engineering too tied into the science blogosphere? (I wondered a similar thing last time I posted about engineers and outreach) Interested scientists and science writers can (and do) do a good job of explaining concepts and results from related engineering fields. For instance, Dot Physics is written by a physicist who routinely covers topics that are related to technology and engineering. On the opposite end, I clearly try to cover science topics that I think I can explain, even if I’m not experts in them. Randall Munroe straddles the border a lot in What If? and Thing Explainer.
  • You might think I’m treading around one obvious potential component of an engineering blogosphere, and that’s tech blogs. But engineering isn’t just “tech companies”, which in modern parlance seems to really just mean computer and Internet companies. (I’ve somewhat ranted about this before in the last two paragraphs of this post.) A lot of stuff also goes on in physical infrastructure that engineers could talk about. And in an era where the Internet seems increasingly interested in discussion of how system shapes our lives, it seems like we’re missing out if the people who help shape physical systems don’t share their voices.

Edit to add: I also realize I didn’t include any discussion about Twitter here, mainly because I’m still a novice there. But I still haven’t seen very long discussions on specific engineering issues on Twitter, though I assume tech is the exception again.

Quick Thoughts on Diversity in Physics

Earlier this month, during oral arguments for Fisher v. University of Texas, Chief Justice John Roberts asked what perspective an African-American student would offer in physics classrooms. The group Equity and Inclusion in Physics and Astronomy has written an open letter about why this line of questioning may miss the point about diversity in the classroom. But it also seems worth pointing out why culture does matter in physics (and science more broadly).

So nature is nature and people can develop theoretical understanding of it anywhere and it should be similar (I think. This is actually glossing over what I imagine is a deep philosophy of science question.) But nature is also incredibly vast. People approach studies of nature in ways that can reflect their culture. Someone may choose to study a phenomenon because it is one they see often in their lives. Or they may develop an analogy between theory and some aspect of culture that helps them better understand a concept. You can’t wax philosphical about Kekule thinking of ouroboros when he was studying the structure of benzene without admitting that culture has some influence on how people approach science. There are literally entire books and articles about Einstein and Poincare being influenced by sociotechnical issues of late 19th/early 20th century Europe as they developed concepts that would lead to Einstein’s theories of relativity. A physics community that is a monoculture then misses out on other influences and perspectives. So yes, physics should be diverse, and more importantly, physics should be welcoming to all kinds of people.

It’s also worth pointing out this becomes immensely important in engineering and technology, where the problems people choose to study are often immensely influenced by their life experiences. For instance, I have heard people say that India does a great deal of research on speech recognition as a user interface because India still has a large population that cannot read or write, and even then, they may not all use the same language.

Red Eye Take Warning – Our Strange, Cyclical Awareness of Pee in Pools

The news has been abuzz lately with a terrifying revelation: if you get red eye at the the pool, it’s not from the chlorine, it’s from urine. Or to put it more accurately, from the product of chlorine reacting with a chemical in the urine. In the water, chlorine easily reacts with uric acid, a chemical found in urine, and also in sweat, to form chloramines. It’s not surprising that this caught a lot of peoples’ eyes, especially since those product chemicals are linked to more than just eye irritation. But what’s really weird is what spurred this all on. It’s not a new study that finally proved this. It’s just the release of the CDC’s annual safe swimming guide and a survey from the National Swimming Pool Foundation. But this isn’t the first year the CDC mentioned this fact: an infographic from 2014’s Recreational Water Illness and Injury Prevention Week does and two different posters from 2013 do (the posters have had some slight tweaks, but the Internet Archive confirms they were there in 2013 and even 2012), and on a slightly related note, a poster from 2010 says that urine in the pool uses up the chlorine.

A young smiling boy is at the edge of a swimming pool, with goggles on his forehead.

My neighborhood swim coach probably could have convinced me to wear goggles a lot earlier if she told me it would have kept pee out of my eyes.

Here’s what I find even stranger. Last year there was a lot of publicity about a study suggesting the products of the chlorine-uric acid reaction might be linked to more severe harm than just red eye. But neither Bletchley, the leader of study, and none of the articles about it link the chemicals to red eye at all, or even mention urine’s role in red eye in the pool. Also, if you’re curious about the harm, but don’t want to read the articles, the conclusion is that it doesn’t even reach the dangerous limits for drinking water. According to The Atlantic, Bletchley is worried more that it might be easier for an event like a swimming competition to easily deplete the chlorine available for disinfecting a pool in only a short amount of time. This seems strange because it seems like a great time to bring up that eye irritation can be a decent personal marker for the quality of the pool as a way to empower people. If you’re at a pool and your eyes feel like they’re on fire or you’re hacking a lot without swallowing water, maybe that’s a good sign to tell the lifeguard they need to add more chlorine because most of it has probably formed chloramines by then.

Discussion of urine and red eye seems to phase in and out over time, and actually even the focus of whether its sweat or urine does too. In 2013, the same person from the CDC spoke with LiveScience and they mention that the pool smell and red eye is mainly caused by chloramines (and therefore urine and sweat), not chlorine. A piece from 2012 reacting to a radio host goes into detail on chloramines. During the 2012 Olympics, Huffington Post discussed the irritating effects of chloramines on your body, including red eye, and the depletion of chlorine for sterilization after many Olympic swimmers admitted to peeing in the pool. (Other pieces seem to ignore that this reaction happens and assume it’s fine since urine itself doesn’t have any compounds or microbes that would cause disease.) In 2009, CNN mentions that the chloramines cause both red eye and some respiratory irritation. The article is from around Memorial Day, suggesting it was just a typical awareness piece. Oh, and they also refer to a 2008 interview with Michael Phelps admitting that Olympians pee in the pool. The CDC also mentions chloramines as potential asthma triggers in poorly maintained and ventilated pools and as eye irritants in a web page and review study that year. In 2008, the same Purdue group published what seems like the first study to analyze these byproducts, because others had only looked at inorganic molecules. There the health concern is mainly about respiratory problems caused by poor indoor pool maintenance because these chemicals can start to build up. Nothing about red eye is mentioned there. In 2006, someone on the Straight Dope discussion boards refers to a recent local news article attributing red eye in the pool to chlorine bonding with pee or sweat. They ask whether or not that’s true. Someone on the board claims it’s actually because chlorine in the pool forms a small amount of hydrochloric acid that will always irritate your eyes. A later commenter links to a piece by Water Quality and Health Council pinning chloramine as the culprit. An article from the Australian Broadcasting Corporation talks about how nitrogen from urine and sweat is responsible for that “chlorine smell” at pools, but doesn’t mention it causing irritation or just using up chlorine that could go to sterilizing the pool.

Finally, I just decided to look up the earliest mention possible by restricting Google searches to earlier dates. Here is an article from the Chicago Tribune in 1996.

There is no smell when chlorine is added to a clean pool. The smell comes as the chlorine attacks all the waste in the pool. (That garbage is known as “organic load” to pool experts.) So some chlorine is in the water just waiting for dirt to come by. Other chlorine is busy attaching to that dirt, making something called combined chlorine. “It’s the combined chlorine that burns a kid’s eyes and all that fun stuff,” says chemist Dave Kierzkowski of Laporte Water Technology and Biochem, a Milwaukee company that makes pool chemicals.

We’ve known about this for nearly 20 years! We just seem to forget. Often. I realize part of this is the seasonal nature of swimming, and so most news outlets will do a piece on being safe at pools every year. But even then, it seems like every few years people are surprised that it is not chlorine that stings your eyes, but the product of its reaction with waste in the water. I’m curious if I can find older things from LexisNexis or journal searches I can do at school. (Google results for sites older than 1996 don’t make much sense, because it seems like the crawler is picking up more recent related stories that happen to show up as suggestions on older pages.) Also, I’m just curious about the distinction between Bletchley’s tests and pool supplies that measure “combined chlorine” and chloramine, which is discussed in this 2001 article as causing red eye. I imagine his is more precise, but Bletchley also says people don’t measure it, and I wonder why.

Let’s Rethink Science Journalism

There’s been a lot of talk about science journalism after the revelation that a heavily publicized study about chocolate helping weight loss was actually a sham. A great deal of this is meta-commentary about whether or not the whole “sting” was ethical or if it even added much to ongoing discussions on science communication. It’s worth pointing out that science journalism in major outlets could be said to work for the most part, as they didn’t actually report on the study. The ScienceNews piece points out that a Washington Post reporter did want to write up something on the study and dropped it when he became suspicious. HuffPo would be the obvious exception in that they evidently had TWO pieces at one point on the study, but it’s science and health sections have historically been pretty questionable. (The science section has gotten better lately. I don’t know about the health section.)

I’m going to mainly focus on science in general publications, because that’s what most people see. And because science journalism in general publications has a weird organization. The standard treatment seems to be that a science journalist should be able to write on any science topic, regardless of background. That increasingly strikes me as strange. The conceptual difference between, say, astronomy and neuroscience is huge. That’s not to say people can’t be good at covering multiple fields of science. Rachel Feltman at The Washington Post wonderfully covers developments from all over science. But I think we should recognize that this is an incredible talent that not everyone has. (Indeed, going over HuffPo’s recent pieces, it’s notable how many seem to come from actual scientists now compared to what seemed like a never-ending stream of uncredited articles probably coming from anyone with an Internet connection a few years ago.)

A man is shown looking slightly up. Floating above his head are a moon, frog, butterflies, crystals, and some other objects, perhaps representing his thoughts or ideas.

It’s hard to actually have all this in your head.

Pretending that all science writers can cover everything harms science journalism. Where I think this shows up particularly clear is coverage of work done by children. For instance, consider last year’s story about the 12-year-old who supposedly made a major breakthrough about lionfish. Let’s be clear: Lauren did a lot of research for a 12-year-old and contributed a lot to a science lab and we should celebrate that. But so many outlets either exagerrated the claims of her father or took his overly hyped claims too much at face value, because it seems like none of these original reporters had any idea where her project fit in with other research. Similarly, there was the 15-year-old who said to have “invented a way to charge your phone”, but his project was similar to research that has been done for years (but again, Angelo ended up doing a lot of work for his age and seemed to develop a way to make it more effective).

I don’t think there’s a reason why a publication couldn’t cover all its science section by having more specialized journalists who also happened to work outside of science. For example, maybe someone covering physical sciences could also cover engineering and manufacturing firms for business reporting and someone else could be on a combined life sciences/health beat. And someone who can specialize and keep up to date on a smaller area can probably toss out names that better reflect the diversity of the research community instead of just pulling up the same few powerful people who typically get referenced . In fact, probably one of the best trends in science coverage over the last decade has been the proliferation of pieces focusing on social implications of science and also pieces that focus on how science is shaped by society. Reporting like that would benefit from more journalists and communicators who cover things both inside and outside of science and can give voice to diverse groups. And also, it would be great if these pieces actually called on scholars in the sociology, history, and/or philosophy of science and technology to help inform these pieces.

It is an image announcing a panel discussion, entitled

Discussions like this reflect important discussions in society that need to happen in science, too. And they’re at their best when people can understand science and society.