Going over the Critique of Cosmos part 1 and a brief review of part 2

Like I said before, Hank Campbell’s had some interesting critiques of the first episode of Cosmos. I thought nearly all of them missed the mark, and to be honest, it seems like he’s being a bit of a science hipster here. I want to go more in depth, and I’ll do that here. Let’s go through his points

1. Venus was not caused by global warming

Let’s look at what Campbell says:  “We have to ask why he thinks Venus is the way it is due to the greenhouse effect — which is another way of saying global warming. Venus is almost 900 degrees Fahrenheit and the clouds are sulfuric acid. Even the most aggressive climate change models and their 20-foot ocean rises don’t predict that for Earth… If this sequel to Cosmos had been made in 1989 the screenwriters of Cosmos would have invoked acid rain on Venus instead of global warming. Regardless, CO2 did not cause the poisonous conditions on Venus; instead, CO2 is an effect of the poisonous conditions on Venus. Invoking the greenhouse effect when talking about Venus is like blaming ocean liners for inventing barnacles.

Okay, but global warming isn’t the same as the greenhouse effect.  If it weren’t for the CO2, SO2, and H2O, Earth’s surface temperature would be significantly lower. That is the definition of the greenhouse effect. More technically, the greenhouse effect is when a gas in an atmosphere can absorb heat radiated from a planet surface, which then redirects some of the heat escaping from the planet back towards the surface. This shift the temperature equilibrium to higher than it would without the greenhosue gas. In an exchange on a follow-up on his website, Science 2.0, Campbell says the real culprit is hydrogen escape. (Note: I’m the “Matt” participating in the comment section.) “On Venus gravity, hydrogen is already light so a lack of gravity causes the water problem to go nuts. No water, CO2 goes crazy – but CO2 did not cause the atmosphere of Venus, Tyson knows it, anyone who knows high school atmospheric science knows it…”

Campbell probably overestimates hydrogen escape by itself. Hydrogen escapes from Earth too (we’re predicted to lose our all water due to hydrogen escape within the next billion years). Also, Venus’ surface gravity is about 90% that of Earth’s, so hydrogen shouldn’t experience that much weaker of a pull to the planet that it does here.  The chain of cause and effect leading to atmospheric changes on Venus doesn’t mean the greenhouse effect doesn’t describe the current temperature, or ever played an effect in the evolution of Venus’ climate. Even planetary scientists describe Venus’ history as the result of a “runaway greenhouse effect”. Once most of Venus’ water was in the atmosphere, it stayed that way because water vapor is also a greenhouse gas and raised the temperature enough to prevent condensation into massive oceans that could have held on to the water longer. (It’s easier to strip hydrogen from molecules in the atmosphere.) This is also why I don’t buy the idea that this segment relates at all to climate change debates. CO2 is not the only greenhouse gas, and this is typically mentioned in modern discussions about methane, and Tyson didn’t actually mention the concentration of CO2 in Venus’ atmosphere. Campbell takes his concern of framing too far here.

2. The Multiverse is Not Science

Campbell: “Any time a scientist begins a sentence with “Many of us suspect,” it is codespeak for “we sit around and discuss it at the bar.”

Why not just let that go as artistic license? When Carl Sagan was filming the originalCosmos program, physicists Alan Guth and Andrei Linde had not even come up with “inflation” for the Big Bang that Tyson mentions casually. Thus, it would not have made it into the original Cosmos as fact. Too much speculation makes the audience wonder if scientists are going to be trusted guides or another version of Dr. Oz and his Miracle Vegetable of the week. Science doesn’t need to toss in speculation to be interesting, because what we know and therefore don’t know is fascinating enough.”

“The multiverse is not science. It is more like an anthropic secular alternative to a divine origin. It’s not science because it can’t be proved or disproved — it’s just postmodernism with some math. And it’s invoked shortly after the introduction where Tyson tells us to test everything.”

I also kind of cringed when Tyson mentioned a multiverse and it even had a visualization with the spaceship of the imagination. But if you pay attention to the language of the episode, you’ll see that the writers were actually being pretty deliberate. Tyson used “suspect” here. But for the rest of the episode, Tyson never describes a scientific theory as anything less than a fact (which is how scientists treat theories). This means Cosmos is not elevating the idea of a multiverse to the level of accepted scientific theory. And it is true that many physicists and cosmologists “suspect” a multiverse.  Also, Campbell seems to only be thinking of a string theory multiverse in his critique. Tyson’s description didn’t specify the “kind” of multiverse, but the description and visualization seemed to suggest one resulting from “chaotic inflation”. That kind of multiverse actually may be testable if we see an “imprint”, and the new gravitational wave measurements suggest chaotic inflation is the inflation model that more closely matches our universe.

3. There is No Sound In Space

Like I said before, there actually isn’t a good defense of this. Tyson wouldn’t accept it in any other show, and I’m surprised he let that happen here.

4. Giordano Bruno Was Not More Important To Science Than Kepler And Galileo

Like I said before “The episode did not claim Bruno was more important than contemporary natural philosophers and empiricists and definitely pointed out that he wasn’t a scientist. Bruno’s ideas, though, do fit in well with the idea of understanding our place in the universe, which was the entire point of the first episode, as stated in like the first five minutes.”

5. The Universe Was Also Not Created in One Year

“On January 1st, we had the Big Bang and on December 31st, I am alive, less than a tiny fraction of a millisecond before midnight. That can’t be right — it took me a whole day just to write this article.

Oh, Cosmos is not being literal? Oddly, a number of religious critics, Tyson included, insist that too many religious people believe the Book of Genesis is taken literally by people who read the Bible. Unless we accept that figurative comparisons help make large ideas manageable, a year is no more accurate than six days — it is instead a completely arbitrary metric invented to show some context for how things evolved.”

Oh my God, seriously? Hank Campbell is trying so hard to not want to be in a culture war that he wound up back in it. First, Tyson is not nearly as involved in the science aspect of the “culture war” as, say, Richard Dawkins. Also, many Americans don’t take the Biblical account of Genesis figuratively. According to a 2012 Gallup poll, 46% of Americans think God created humans instantly in their present form within the last 10,000 years.

All these complaints just seem… odd. Like I said, “science hipster” is the best description I can think of. I was surprised to hear Campbell really liked the second episode. I actually liked that episode less. The description of the evolution of the eye seemed like a just-so story  in some steps, and probably would not win over the creationists who argue that “the eye is too complex to have evolved”. I thought the step showing the evolution of the lens seemed HUGE and it wasn’t associated with an organism like most of the other steps were. I feel like it would have been more straightforward to show the variety of eyes in the context of the tree of life, but maybe I say this because I’m not as familiar with evolutionary biology. The visualization of DNA seemed “too busy” at times, and they kept changing schematic representations without explaining it. I get that DNA doesn’t really look as pretty as it does in my old bio textbooks, but I was unsure of what was being represented at times. I thought the comparison of DNA sequences seemed a bit odd without a description of what base pairs are.

The Titan bit also seemed odd. I liked the description of Titan, but didn’t like the idea of the ship of the imagination visiting a hydrothermal vent (or its analogue) there. To me it seemed like the show was saying the hydrocarbon lakes on Titan are as deep as Earth’s oceans, and unless I’m really behind the times, I don’t think we know the depth that much. And we definitely don’t know if there are hydrothermal vents on Titan, and that visualization wasn’t accompanied by Tyson saying we “suspect” or some other phrase that would give it less of a weight than a theory/fact like the multiverse visualization was.

There Might be Life in Space, but This Paper Didn’t Prove It

An article published in the Journal of Cosmology last month made headlines with its bold claim: alien life can be found in Earth’s atmosphere. The rest of the scientific community ins’t convinced. The Journal of Cosmology isn’t a “peer reviewed” journal, which is the gold standard for scientific work. This means papers the journal publishes aren’t really evaluated for quality or accuracy. In fact, it’s even been labelled “predatory” by one research librarian. As a general rule, it’s also really not a good sign when a paper making a bold claim mainly cites other papers by its authors.

The lack of peer review on the paper seems justified; there’s not much data.  The paper relies almost entirely on just microscope images . Virtually any structure that has a bend or fiber is declared evidence of life, for no clear reason. (This may be a trend, as PZ Myers basically made the same complaint of a previous Journal of Cosmology paper claiming to have found bacteria in meteorites)

If you can see four bacteria in this post, I will give you a prize*

If you can see four living things in this post, I will give you a prize*

This paper claims the images are of diatoms or diatom-like lifeforms, but they don’t show any as reference and their images aren’t magnified like most that try to show diatom structures.

A known diatom from Earth.

The authors also try really hard to link the alleged cells they see to alleged organisms responsible for the red rains in Kerala, India several years ago (those claims inspired similar controversy and seemed to rely on evidence that was only slightly more firm than what is offered here). If you’re going to make that connection, though, maybe you should show an image of that.

Aside from images, the only other data the paper mentions is a technique to measure the amount of elements in the sample. The paper only says the samples are high in carbon and oxygen, but don’t provide numbers.  They say that means what they’re looking at isn’t a mineral, but it’s worth pointing out there are in fact many meteoroids that are mostly carbon and oxygen so they might be looking at weird dust from those. That’s it; no attempt to extract any potential organic matter (though that’s also a dime a dozen in space, even without life).

The people at the Journal of Cosmology say other scientists are irrationally opposed to the idea that life on Earth may have originally come from outer space. While that’s not the dominant opinion in biology right now, it actually is something mainstream scientists are looking at. It’s just that, as Carl Sagan said, “extraordinary claims require extraordinary evidence”. And a bad SEM image is not the latter.

*The prize is my affection.

Real Stars Break Down Alcohol Through Quantum Mechanics, Not Their Liver

When most people think of astronomy, they think of physics. Many astronomers are technically astrophysicists, and even if that’s not their title, most have a physics background. (If you’re really in the know, you might know that planetary science is a distinct field that draws a lot on geology as well as astronomy.)  But another aspect of space science that’s grown a lot over the last decade or so is astrochemistry. Astronomers have been able to study chemical compounds in celestial bodies since the the middle of the 20th century, when radio telescopes could detect spectral emissions unique to certain molecules (both nearby and across the galaxy) and even more so when space probes could directly analyze celestial bodies in our solar system. But there’s also a lot of chemicals just out in the middle of space, and the list keeps getting longer and includes increasingly more complicated compounds. Astrochemistry looks at these chemicals and tries to understand how they could form in astronomical environments.

One of the bigger puzzles for astrochemists has been understanding how alcohols are formed and destroyed in space. Space is too cold for methanol to break up into the highly reactive methoxy radical in a way similar to most reactions on Earth. While UV radiation exciting molecules enough to break them apart can explain how some chemicals are formed (and why UV light gives you cancer), lab tests couldn’t detect methoxy after exposing methanol to UV radiation. Dust wasn’t even acting as a catalyst. It actually turns out the reaction works best when the methanol is in its gaseous form at low temperatures because those conditions are optimal for quantum tunneling.

The procession of a chemical reaction in normal, bulk circumstances (on the left) and via quantum tunneling (on the right). From Richard Helmich.

Tunnelingis a phenomenon that only occurs in quantum mechanics. There’s really no good analogy in the classical physics we’re most familiar with. To very quickly sum up, if an electron is in place A and can also be in place C, but A and C are separated by a region B where it shouldn’t be able to travel, it can sometimes still end up in C by tunneling through B. This is also generalized to more than just physical space. Tunneling means particles can do things they shouldn’t have the energy for, like the reaction picture above. Quantum mechanics just says that it won’t happen very often and it can take some time. This is where the low temperature comes in. As we’ve talked about before, temperature reflects molecular motion. At the low temperatures of open space, the methanol and hydroxide are moving relatively slowly. When they bump into each other, this means they won’t bounce off immediately, and in that longer frame of time, an electron is more likely to jump from the methanol to the hydroxide. It turns out this tunneling reaction is really efficient at lower temperatures: lab experiments showed methanol reacted 50 times faster at -210 degrees Celsius than at room temperature. The researchers are also confident that quantum tunneling can explain many other reactions in space.

You Can’t Name a Star, but You Can Name a Planet

If you’ve ever considered buying a star, let me give you advice: don’t. The International Star Registry, the major company that sells “naming rights” to stars, has no official power to do so and admits the name is only put in their own internal catalog, not any reference that astronomers use. In fact, the stars they name aren’t even visible to the naked eye. And considering that they have sold over 1 million named stars, we’re probably getting to the point where you need to make an investment in a good telescope if they’re keeping true to the promise of not renaming any stars.

So screw naming a star and go with something practical: name a planet that orbits another star (an exoplanet). The International Astronomical Union (IAU), the official body responsible for naming celestial bodies, has recently changed its procedures on naming exoplanets and their moons. Part of this was in response to an attempt to sell naming rights to a nearby exoplanet. The IAU pointed out that a naming process taking place completely outside it may have a winner that still doesn’t end up as the official name.  (They seemed particularly worried that people were paying money for this, even if it was a fundraising campaign for astronomy.) The campaigns were really popular, though, and the IAU seems to have decided that the public interest in these cases merits opening up exoplanet naming to the masses.

Currently, exoplanets just get an official scientific name based on the star they orbit. It’s not the typical science fiction standard where a planet’s name is the star it orbits plus a number representing what order it is from the star. Planets are still named after the star they orbit, but are named with lower case letters indicating the order of discovery, not the distance of the sun. So 55 Cancri e is closer to 55 Cancri than 55 Cancri b, but b was discovered first. The IAU’s new proposal doesn’t replace the technical names, but also creates official “common” names for public use.

Like all IAU naming systems, this one comes with a lot of rules. The big ones are that suggested names shouldn’t duplicate names of other bodies and they shouldn’t be commercial, offensive, or controversial. Other than that, the system is pretty open because the same rules as naming asteroids and dwarf planets apply. Those are pretty diverse, with names ranging from Ceres, Roman goddess of grain, to Einstein to Karl Marx. The system also specifies how groups that want to organize competitions to name bodies should do so: organizations should notify the IAU in advance, not collect revenue from the process, and inform the discoverers of the object.

One thing the IAU points out is that our understanding of discovered exoplanets is incomplete. In particular, there isn’t 100% certainty that each exoplanet that has been announced actually exists. Some of the detection techniques can give false positives, and though repeated observations are done before the discovery is announced to minimize that chance, it still exists. And it is also possible some planets may have been detected multiple times by different techniques. I wonder what would happen if the multiple discoveries had different names and were later revealed to be one.

If this really does catch on (and the IAU manages to quickly assign public names), I wonder how much theme naming would unofficially catch on in nomination. Would Sirius’ planets be doomed to dog and/or Harry Potter names? And I’m totally seeing someone trying to name a gas giant with multiple moons Polyphemus and one of its moons Pandora.

What’s interesting is the IAU note seems to cover more than just exoplanets and their moons. The title says “planets and planetary satellites” and nothing in the announcement specifies that the procedure only applies to extrasolar bodies. So this might mean that this applies to all future planet and satellite discoveries, even in our solar system. While we’re probably done with finding planets, astronomers expect to find more dwarf planets (though technically, as minor planets, they follow a different naming scheme than regular planets) and we keep finding satellites of both regular and dwarf planets. In fact, the IAU chose one of the names that won a contest to name one of Pluto’s two newly discovered moons.

Thoughts on Star Trek Into Darkness

So I recently watched Star Trek Into Darkness (and this seems to have won out as the proper stylization) and found myself having strong feelings (or I suppose if I want to get tech blog credit, “feels”) about it. And before you claim I’m overthinking it, or far too much of a Trekkie, let me explain myself

  • I mostly enjoyed the movie in the theater (with some exceptions)
  • I like Star Trek, but I’m probably a “Diet” Trekkie at best since I’ve really only seen The Next Generation (and still technically not all of it), Voyager, and Enterprise and little bits of Deep Space Nine and the original series (and read none of the novels or other things). For Trekkies who generally love DS9 more than Voyager, realize the preference there is related more to by bed time in elementary school when both of those were on. (Wow, I just admitted a bed time on the Internet, that was unexpected. Also, I just learned virtually every episode of every Star Trek series is on Netflix, so this excuse probably doesn’t hold anymore)
  • I do think there’s a difference between a good individual movie and a movie that’s supposed to fit into a franchise

So let’s talk about the experience in the theater as a singular movie. First, the pros. It delivered as an action movie and was a decent science fiction movie. Having only really seen Benedict Cumberbatch in Sherlock, it was interesting to see him play such a physical character. Spock, Kirk, and Scotty were all great and Scotty was pretty fun to watch when he was off on his own. But let’s also get to the two big things that really threw me off during the movie.

Depicted: A surprisingly accurate view of cold fusion compared to Star Trek Into Darkness

First, the entire opening scene was unintentionally hilarious to me.  The trailer clip of Bones and Kirk running in a gorgeous red rainforest is the start. And that was fine (wow, for once a trailer in recent memeory that didn’t spoil). But it turns out they jump off a cliff because the Enterprise is underwater? We find out the reason the crew is even on the planet is because a volcano is about to erupt and it threatens to wipe out a primitive alien species. Kirk and Bones are running because they stole some sacred scroll from the aliens and the chase would draw the tribe farther away from the volcano. We then find out Spock is in the volcano, preparing a cold fusion device. I’m not joking, that’s official. Okay, that sounds weird because cold fusion isn’t “cold”, it’s just fusion that takes place at like room temperature instead of the temperature inside the heart of a star. Like the arc reactor in Iron Man. That’s cold fusion (plus magic comic book science, but technically cold fusion). But okay, maybe I’ll give it a pass, this is like the far future so maybe it’ll do something like how the US government hoped to use nuclear bombs for constructive purposes. Then we see it go off. And the cold fusion device seems to cause the magma to ice over. Yep, okay, it’s as stupid as I thought. (Slight spoilers immediately after the cut, bigger spoilers further down)

Continue reading

A Day Without Satellites

The BBC has a short fictional piece about what would happen if all the world’s satellites stopped working. While that is unlikely, it’s an interesting look at how much satellites are integrated into everyday technology. For instance, while the Internet is mostly an Earth-based affair with undersea cables connecting continents, I didn’t know that that the atomic clocks on GPS satellites were used by data centers and Internet exchange points to timestamp Internet data packets. One thing I’m a bit confused by is how much the article claims international telephone calls would be disrupted. I could see things like aid workers and military units who are in areas with little landline or mobile infrastructure being affected, but I thought most international calls on landlines and regular cell phones were done through the undersea cable network.

While this article may be drastic, it is important to note that our satellites are increasingly at risk of damage and it’s an issue that increasingly concerns industry and governments.

Revising the Universe

This week, scientists affiliated with the European Space Agency’s Planck observatory announced several discoveries from the first 15 months of Planck observations. Planck observes the cosmic microwave background (CMB) radiation. The CMB is the oldest light we can observe in the universe (from about 380,000 years after the Big Bang), because it comes from the time when neutral atoms finally formed and stabilized and photons were no longer constantly absorbed by free electrons and protons. Because of it’s age, studying the CMB enables astronomers and cosmologists to look at the early structure of the universe.

The newly released Planck data contains a few surprises, some vindications of previous work, and many things that are a mix of both. One of the things I found most interesting was the newly calculated age of the universe. Based on the Planck observations alone, the team predicts the age of the universe to be about 13.82 billion years. What’s great about this is that it falls exactly within the resolution of the previously predicted age of the universe by NASA’s WMAP data, 13.73 billion years +/- 0.12 billion. The error bars on the WMAP data mean that anything within 0.12 billion (120 million) years of each other is pretty much indistinguishable from each other. That the Planck data falls within in it means our observations and models seem to be very good at describing the universe.

What’s even more interesting (at least to me), is the stuff that doesn’t entirely jibe with our understanding of the universe. Sure, the age is a bit different because of a change in when dark energy is believed to kick in (the force that is causing the accelerating expansion of the universe that was discovered in the late 90s), but the slight change is practically bookkeeping compared to the other things. When discussing fundamental physics, I mentioned one major kink in our theories is that there seem to “preferred” directions for giant globs of stuff to clump together in the universe. The Planck data shows many deviations from randomness that WMAP found still hold and weren’t just caused by limits in WMAP’s data.

So what do we have?  The big deal is that the universe seems to be off-balance. If you look at the image below, comparing Planck’s data to the model, the left and right side seem to have different brightness. Since the brightness of the CMB is related to where mass would accumulate, this would also mean there’s more stuff in one half of the universe than the other, based on what we can see. It’s also worth noting that Plait says the distribution of hot and cold spots still seems random; it’s just the intensity that isn’t.

Image of deviations of Planck’s data from the standard cosmological model. Credit: ESA and the Planck Collaboration

Another quirk is the so-called CMB cold spot, a region initially found in WMAP data that was both larger and colder than expected for a random distribution. In recent years, some people challenged its existence and said its uniqueness might be due to how WMAP’s data was analyzed, but it still holds up in the Planck data release (although I can’t find out if the Planck team used the same statistical analysis as WMAP, so the Michigan scientists might still have a point).

So what do these mean? Well, a popular theory for each of these that these are “imprints” from another universe. If you’ve heard anything about string theory, you probably know that it requires the existence of many other dimensions (10 or 11, typically, depending on the exact form). In some versions of string theory, our 4D (3D-space + 1D time) universe can move around in this higher-dimensional space called the bulk and it could also potentially interact with other universes.

This’ll be an exciting time for cosmologists and physicists as they try to reconcile their theories with the new observations.

PS: I can’t find if Planck shows anything about the “axis of evil” alignment or dark flow, which are other interesting structural observations. But both of them depend on large scale surveys like Planck (and dark flow was specifically based on CMB data), so I could see these being looked as people have more time to process the released data.